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After a summary of the fundamental concepts of quantum mechanics in phase 
space we apply the Moshinsky-Winternitz classification of the time-independent 
quadratic Hamiltonians in one and two dimensions to give the explicit form of 
the phase-space propagators, and make some comments on their spectra. 

1. PHASE-SPACE QUANTUM MECHANICS 

The idea of building a quantum formalism in phase space starts at the 
beginning of the 1930s (Weyl, 1931; Wigner, 1932). At this time it was 
thought to associate quantum operators with every classical observable 
through certain correspondence rule (Groenewold, 1946; Moyal, 1949; 
Agarwal and Wolf, 1970; Krfiger and Poffin, 1977). Wigner introduced the 
function which takes his name; this function describes a quantum state and 
is defined on the classical phase space associated with the problem under 
study. Since then many attempts have been made to accomplish a systematic 
study of this alternative to the usual quantum theory. 

A simple approach to the Weyl correspondence and the Wigner function 
is given in de Groot (1974). A deeper approach can be found in V~rilly 
and Gracia-Bondfa (1988), Gracia-Bondfa (1986), and Amiet and Hugenin 
(1981). The key idea lies in associating to every quantum operator a function 
in the variables q and p. This new formalism has certain advantages in 
relation to the traditional approach. For example, some calculations are 
simpler when we use phase-space functions than with the use of the 
operators; we circumvent the problems that arise with domains of non- 
bounded operators; and in this formalism the classical limit of the quantum 
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expressions can easily be obtained by performing the limit when h goes to 
zero. 

We restrict ourselves to spinless particles without constraints and we 
stipulate that we are working in Cartesian coordinates (the integrals will 
always be taken from -o0 to +~) .  

Let us consider an observable A related to a certain physical system 
with n degrees of freedom. The Weyl-Wigner correspondence gives us a 
one-to-one mapping between quantum observables and real-valued func- 
tions or distributions defined on the 2n-dimensional phase space and vice 
versa: 

W: A ~ a ( q , p )  

fig: a (q, p) -> A 

by means of the following expressions (de Groot, 1974): 

a(q, P)= I du [exp ( h  qu) 1 (P +�89189 

f [ ( ' )  = dv exp ~pv (q-�89189 (I) 

A:(2--~)" f dqdpa(q,P) I dv [exP(hPV ) ] l q + 2 > ( q - 2  

=(2-~)" f dqdpa(q,p) f du [ e x P ( h q u ) ]  [p-2><P+21 (2) 

The magnitudes a(q,p) obtained in this way are not classical. The 
theory elaborated starting from these functions is a reformulation of quan- 
tum mechanics. It is well known that we cannot reduce quantum mechanics 
to classical statistical mechanics as Weyl had originally guessed. 

Let us consider a quantum state represented by the density operator 

p( t) = Y, o, jlO:( t))( C,j( t)l J 
with 0 - a j - <  1, Zj aj = 1, and {[#//(t))} an orthonormal system. 

The Wigner function associated with this state is defined as 

( ' )"  %(q, p, t) = ~ w [ p ( t ) ]  

The mean value of the observable A in the state p turns out to be 

= f dq dp Wp(q, p, t)a(q, p) 
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This and other properties seem to suggest treating Wp(q,p, t) as a 
probability density function in phase space. However, this happens to be 
false: the Wigner function is not necessarily a positive-definite function 
(Hudson, 1974; Soto and Claverie, 1983a,b). 

Let f(q,  p) and g(q, p) be functions defined on the phase space. Let F 
and G be operators such that 

l~[f(q,  p)] = F, Wig(q, p)] = G 

We want to know the function associated with the operator FG: 

12V[FG 1 = IW{( l~df)( l~r 

This function is called the twisted product of the functions f(q, p) and 
g(q, p), and we denote it as ( f x  g)(q, p). 

By using (1) and (2), it turns out that 

( f x g ) ( u ) =  - ~  dvdwf (v )g(w)exp  (UTJv+vTJw+wTJu) (3) 

where 

0 

In is the n-dimensional identity matrix and u v= (q, p), v v= (q', p'), and 
w T= (q", p") are variables on the phase space. 

It has been rigorously proved that (3) is meaningful for functions 
belonging to the Schwartz space (V~irilly and Gracia-Bondia (1988)). The 
proof is also generalizable to elements belonging to a subset of generalized 
functions that turns out to be a *-algebra of distributions that contains all 
the polynomials, all the functions defined on the Schwartz space, and all 
the distributions having compact support. In particular we can calculate 
twisted products in which quadratic Hamiltonians in coordinates and 
momenta take part (this fact is essential in order to calculate their propa- 
gators). 

In general ( f •  g)(u) ~ (g xf ) (u ) ,  which is the phase-space counterpart 
of the fact that in general two quantum observables do not commute. 

Let us consider a conservative system [ H ~ H ( t ) ] .  Its quantum 
mechanical evolution operator is 

U( t) = e -(it/~)x 

where ~ is the operator representing the Hamiltonian in conventional 
quantum mechanics. 
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The propagator  in our formalism is defined as the transformed function 
by the Weyl-Wigner  correspondence of  the evolution operator: 

X ( u ; t ) = W [ e x p ( - ~ ) ] = W { e x p ( - h I T ~ [ H ] )  } (4) 

H(u) is the classical Hamil tonian of  the system. The propagator  is the 
main object in this formalism. 

I f  we define 

I IH(u;  E)  = (2.rr~)i/2 XH(U; t) e 'z'/~ at 

we can obtain the quantum values of  the energy as the support  on E of 
the function I I . ( u ;  E).  

Let us consider classical Hamiltonians of  the following type: 

H = �89 + cTu + d 

We call them quadratic Hamiltonians.  Here B is a real, symmetric, constant 
2n x 2n matrix, c is a real, constant column vector, and d is a real number. 
We have 

u T ( t )  = (qa(t), �9 �9 �9 q.(t), pl( t ) ,  �9 �9 �9 p.(t)) 

We define the E(t)  matrix and the a(t) vector as follows: 

u( t) = E( t)u(O) + a( t) (5) 

Using this expression in the Hamiltonian equations, we find 

= JBE, d = JBa + Jc 

By hypothesis, B # B(t), J # J(t), and obviously E(0) = L The solution 
of  the differential systems turns out to be 

~,t = e J B t  

a( t) = ( JB)-l(e sin- I)Jc 

= t [ l + l  (JBt )+l  (JBt)(JBt)+'' '  ] (6) 

Note that the first expression for a (t) is meaningful as a series expansion 
in spite of  the fact that the matrix (JB) -1 could not exist. 

It is easy to check that E(t)  is a symplectic matrix for every time, that 
is, 

~Tj~. = j (7) 
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Through rather cumbersome calculations, it can be shown (Gracia- 
Bondla, 1986; Amiet and Hugenin, 1981) that 

X(u;t) - e x p [ i f l ( t ) / h ]  [~  ] 
{det[(E + 1)/2]} 1/2 exp (urGu + uTK) (8) 

where 

G =- O ( t ) = J ( E + I ) - l ( ~ - I )  (9) 

K ~ K(t) = 2J (Z+  I)- 'a  (10) 

/3(t) is a time-dependent phase, which does not depend on the phase-space 
coordinates. In order to be evaluated, equation (8) has to be substituted 
into the Schr6dinger equation, which in our formalism is 

ih OX/Ot = H x X 

It turns out that 

Io fl(t) = (�89 +~KTjBJK - d) d,  

Note that K is here a time-dependent vector. 
It is important here to remark that the determinant of (~ + I)  is different 

from zero in the situations that we consider in this paper. 
Notice that if we have a homogeneous Hamiltonian, that is, 

H = �89 

then 

a(t) =0,  K(t) =0,  /3(t) = 0 

2. CLASSIFICATION OF QUADRATIC HAMILTONIANS 

2.1. Homogeneous Quadratic Hamiltonians 

Let us consider two homogeneous quadratic Hamiltonians 

H =luTBu, I Y - I = � 8 9  

where B and/~ are different real matrices such that there exists a symplectic 
matrix S that relates them 

JB = Sv BS 

I~I ( u ) ~- 12u T B u  = �89 u T S T  B S u  

If we consider the symplectic change of coordinates ~ = Su, 

H ( u )  = �89 = H(~)  
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we see that the Hamil tonian associated with B in the u variables is equivalent 
to that associated with B in the t~ variables. 

It is easy to obtain 

~, : e.1B'= S-l e.mt s = S-I~,S 

= J(~ + I ) - ' (~  - I) = SvGS 

It is clear that the matrix G is t ransformed by S as B is. With this 
result in mind, it is easy to show that the propagators  associated with 
H(u)=luTBu and I?t(u)=�89 are related by 

x~(S-iu; t)=XB(U; t) 

We see that if we know XB, it suffices to make the corresponding 
coordinate t ransformation to obtain X~. This result lead us to classify the 
homogeneous quadratic Hamiltonians into equivalence classes under sym- 
plectic transformations and calculate the propagators  for the representative 
Hamiltonians of  each class only. For this classification we have followed 
Moshinsky and Winternitz (1980). The authors classify the matrices of  the 
form JB that belong to the Lie algebra sp(2n, R) of  the symplectic group 
Sp(2n, •) into orbits under Sp(2n, R). 

The canonical forms in the cases n = 1 and n = 2 are: 
(i) n = l :  

BI=(10 ~); H l = � 8 9  2) (harmonic oscillator) 

(harmonic barrier) 

B3=(~ 01) ; H3=lp 2 (free particle) 

(ii) n = 2: /i 00!)(lO0!) 
- h  0 B2 = 0 - h  0 

B I =  0 1 0 0 1 

0 0 0 0 0 (oooo t )t 0 B4= 0 -I 0 0 
Bz= 0 1 0 0 0 1 0 

0 0 0 0 0 1 
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0 0 0 , B6 = 0 0 0 

Bs= 0 1 0 1 0 

0 0 E/e=:t:l  0 0 e E=z=l 

Here the units are chosen in order to eliminate some arbitrary constants. 
Each of the Hamiltonians associated with the preceding matrices may 

be written in the form H = H1 +/-/2, where Hi is the Hamiltonian describing 
a harmonic oscillator, a harmonic barrier, or a free particle moving in the 
i direction. These cases are called orthogonally decomposable. We have to 
be careful with realization of sp(4, R) used by Moshinsky and Winternitz. 

There are five more cases, called orthogonally indecomposable: (ooo_ ) 
B =  o o � 8 9  o 

7 0 �89 o 

- � 8 9  (_!oo 
- 1  a / 2  

B9 = A / 2  1 

--a/2 0 0 

-a/2\ 

To evaluate the Hamiltonians 

H = �89 

0 

0 
B s = 

0 e/2 

\ - e / 2  0 ( 0l 0) 
0 1 1 

B l ~  11 0 0 0 0 

o o o 

Bll  = 0 0 

0 1 

0 -~ /2 \  

e/21 00 ) 

0 1 ~:• 

uT= (ql, q2, Pl, P2) 

2.2, Nonhomogeneous Quadratic Hamiltonians 

We have 

H = �89 + CU + d 

Two situations occur: 
(i) det B # 0. Using the change ~ = d -�89 we have 

H=�89 ', d ' = d - � 8 9  

It is easy to prove that the constant d' adds a factor exp[ ( - i /h ) td ' ]  
to the propagator corresponding to the homogeneous part. 
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(ii) det B = 0. This situation is complicated; we do not know a general 
method to attack it yet. 

In the case n = 1, we found 40 nonhomogeneous  different Hamiltonians 
with det B = 0. We classified them under symplectic changes of  coordinates 
and we found that, if we eliminate the nonquadrat ic  ones (i.e., linear in 
q, p),  they can be grouped into two orbits whose representatives are 

Hp =�89 Hq =l(p2+q) (11) 

Hq represents essentially a gravitational field, and Hp corresponds to a free 
particle, Hp 1, -- h2 1 = ~ t p ~ )  -~. 

3. EXPLICIT FORM OF THE P R O P A G A T O R S  

The calculation for one-dimensional homogeneous Hamiltonians has 
already been given (Garcia-Bondfa,  1986). Formulas (6), (8), and (9) are 
used: 

( 2), X1 = exp k--~- H1 tan sec 

( - 2 i  tanh 2)  sech t X2 = exp k-h-- H2 

As we see, X depends on q and p through the Hamiltonian. We carried 
out the computat ions for Hq, Hq 

[ i, -" ' l  
xp=exp[(-it/h)Hp], X q = e x p - - ~ H q  9 6 h i  

For n = 2 the computat ions are more cumbersome. The results are: 

1. HI : 1 2 2 ~ ( P l -  ql)q-�89 (p2 2 - q2) = Hi,1 q-AH1,2 

e x p [ ( - 2 i / h ) H l , ,  tanh( t /2) ]  
X1 = cosh( t /2)  

e x p [ ( - 2 i / h ) H  m tanh(At/2)]  
x 

cosh(At/2) 

= ~(px + qO +~a(p~-  q~) =/-/~,, + AH~,~ 2 .  /_/2 1 2 2 1 

e x p [ ( - 2 i / h  )H2,1 tan( t /2)]  
X2 = cos( t /2)  

exp[ ( -2 i /h )H2 ,2  tanh(At/2)]  
• 

cosh(ht /2)  
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Ha = 5(Pll 2 + ql)2 +�89 (p2+  qZ) = H3,1 + AH3,2 

exp[ (-2i /h) /- /3 ,1 t an ( t /2 ) ]  
X3 - cos ( t /2 )  

e x p [ ( - Z i / h ) H 3 , 2  tan(At/Z)] 
x 

cos(At/2)  

4,  /_/4 1 2 - - 1 : 2  
= ~ P l  t ~ [ p 2  -- qZ) = H4,1 + /_ /4 ,2  

( - i t  ) exp[(-Zi/h)H4,ztanh(t/2)] 
X4 = exp ~ H4,1 cosh( t /2 )  

= ~ ( p l + q l )  H51+ H5 2 5. /-/5 1 2 2 1 2 +~ep2 = , . 

exp[(-Zi/h)Hs,ltan(t/2)] ( - i t  ) 
X5 - cos ( t /2 )  exp --~/-/5,2 

6. H 6  1 2 - - 1  2 = ~pl t~ep2 
X6 = exp[ (-it /  h ) H6] 

In the or thogonal ly  decomposable  cases we can split the Hamil tonian  
into two parts, each depending on the variables (q~, Pz), (qz,P2), respec- 
tively. The propaga tor  is obta ined as a funct ion of  the variables (q ,p )  
through these two parts. 

7. Hv=k(Zplqz-Zpzql) 
e x p [ ( - 4 i / h ) H 7  t an ( t /4 ) ]  

X7 = cosZ(t/4) 

8. H8 = 1 Z 2 1 ~ ( P l  + P z )  +ze(2plqz- 2 p z q l )  = H8,1 + H8,2 

1 ( 7  4) (--h t/4 X8 = cosZ(et/4) exp H8,1 tan exp H8,2 cosZ(t/4)] 

(the variables no longer appear  separated in/-/8);  

9. 1 2 , , H9 = ~(Pl --  q~ + P~ - q22) + �88 (2pl q2 --  2pzqa) = H91 + H92 

2 
X 9 -  cosh t + cos(At/2)  

[ ( 4 
x e x p  cosh t+cos(At/2) 2 8 9 ' 1  sinh t+--H92sin-~-A ' 

10. Hlo = �89 +2q2p2)+�89 , 
1 [-2i t\ {-2i t/2 

XlO= coshZ( t/Zi exp~--ff- H1o,1 tanh ~)  exp k--if- Hlo,Z cosh-~t/2)] 
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l 2 
11. H11 =5(q2+2plp2) 

X,l=exp  -~- H11 expL~-~ ) p,j 

The computation of the propagators for quadratic Hamiltonians in higher 
dimensions requires subtler techniques than the mere direct computation. 
It will be the object of a later study. 

4. SPECTRAL ANALYSIS 

The Fourier transform of X• with respect to the time gives us the 
spectral projectors parameterized by the energy E: 

1 ff~ itE II~(u; E)-(2~rh)l/2 XB(u; t) exp--~- dt (12) 

The support of IIB gives the quantum spectrum of the observable H 
in this formalism. If  we are only interested in the spectrum, it is enough to 
calculate 

l I H s ( u ; E )  d2.u l f~oo itE F(E)-  (2~rh) ~ (2rrh)l/2 tp(t) exp-~- dt (13) 

where the spectral function ~(t) is given by 

1 f d2nu O(t) (21rh)" XB(U; t) (14) 

The computations have been done already in the case n = 1 (Gracia- 
Bondfa, 1986). 

(i) Free particle: 

II(u; E) = ~(p2/2 - E) 

Then E c R +. 
(ii) Harmonic oscillator: 

co 

II(u; E) = Y~ 2(-1)kLk(2H) ,~(2n + 1 - E) 
k = 0  

where Lk denotes the ordinary Laguerre polynomial of order n. The 
spectrum is 

E c {2(n + 1/2), n = 0, 1 , . . .  } 

note that here h = 2. 
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(iii) Harmonic barrier: 

II(u; E ) = e  m s e c h ( - ~ ) 1 F I ( ~ J ~ ,  1 ; - 2 i l l )  

1F~ is the Kummer function of the first kind. The spectrum is E = ~. 
(iv) Gravitational field: 

II(u, E)  = 2 Ai(p2 + q - 2 E )  

where Ai(x) is the Airy function. The spectrum is E = R. 
In the case n = 2 we have two kinds of propagators, those associated 

with the decomposable as well as the indecomposable cases. The decompos- 
able ones are of the form 

x(ql, q2, Pl, P2, t) = xl (ql ,  Pl ; t)x2(q2, P2; t) 

and II is expressed in terms of the convolution of II1 and 112, which are of 
the form previously seen. 

Let us consider the indecomposable cases. 
Using formula (12) and X11, we have for the spectral projector 

1 foe e iEt/h e -itHn/fi e -itsp~/24h 1111(/,/; E)  dt (2,n-h) 1/2 

which turns out to be an Airy integral (Watson, 1966, p. 188): 

1~11(ql, q2, Pl, P2 ; E) 

2,r {24h'~l/3[y'~l/2f 3/2 [ [y.~3/2" I 
= 3(2,r/,~)l/2~k"~12 ] ~ ) ~ J - 1 / 3 ( 2 ( 3  ) )-]-J1/3~2~-~)~, , ~ 0  

2 (24h'~l/a(-'y)l/2K1/3(2(-7-~) 3/2) "y(O 
.3(2~.h)1/2\ p2 ] 

where J~ are Bessel functions of the first kind, K~ the modified Bessel 
functions (or Kelvin functions), and 

E -  Hll(24h) 1/3 
i 

The spectrum is then E = •. 
When det B ~ 0, it is possible to use q,(t) instead 11(u, E).  In that case 

i" 
q,(t) = [det(E - 1)] 1/2 (15) 

This is a general result in n dimensions and we prove it in the Appendix. 
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We apply this formula to BT, B8, B9, and Blo. We omit the intermediate 
computations and present the matrices Ek associated with the matrices Bk 
of (6) only and the Ok : 

~7 ~--- 

[ cos�89 sinlt  0 ~ ] 

/ - s i i  �89 cOs�89 0 
0 cos �89 sin �89 
0 -sin it cos �89 

-1 
~bv(t)-4s.n2.t " - ' 1  ( / 4 )  

~8 

fcos�89 sin�89 t cos�89 t sin�89 

-sin�89 cos�89 - t s i n � 8 9  t cos�89 

0 0 cos�89 sin�89 
0 0 -sin�89 cos �89 

--1 
~b8(t) = 4 sin2(t/4) 

E9 = 

(coshtcos�89 (coshtsin�89 (sinhtcos~At) (sinhtsin~At) \ 
(-cosh t sin�89 (cosh t cos�89 (-sinh t sin�89 (sinh t cos�89 / 
(sinhtcos�89 (sinhtsin�89 (coshtcos�89 (coshtsin�89 / 
(-sinhtsin�89 (sinhtcos�89 (-r (coshtcos)At)/ 

-1 
4'9( t) 4[sinh2(t/2) + sin2(At/4)] 

"~10 

et e t 0 

0 e -t  

0 - t e - '  t 

-1 
~ 0 1 o ( t )  - 

4 sinh2(t/2) 
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Using formula (13), we obtain 
1 leo _eitE/h 

F7(E) = Fs(E) = (2~rh)l/2 -oo 4 sin2(t/4) dt 

4 I~oe,~X(e,X_e_,X)_2dx 
- (27rh)1/2 

where t = 4x and c~ = 4E/h. 
Operating formally, we have 

FT(E)=Fs(E)-  4 fm_ooei'~Xe-2ix(1-e-2i")-2dx 
(27rh) 1/2 

4 I~o e,{~_2) ~ 
-- (27rh) 1/2 

[ ~ 2 " 3 " " ( 2 + k - 1 )  ] x 1 + k ! e - 2 i k x  dx 
k=l 

4 ~ ( k + l )  e i~(~-2-2k~ dx 
- (2~'h) v2 k=o 

4 ~ 
- (2./rh)1/2 k~__ ~ ( k +  1)2~rS(a - 2 - 2 k )  (16) 

We recall that the energy spectrum is the support of F (E) ,  which in this 
case is 

E =lh(2+2k)=�89 k = 0 ,  1 , . . .  

which corresponds to the energy levels of the two-dimensional quantum 
oscillator. 

Proceeding formally as in the previous cases, we obtain 

Flo(E) -1  I_~o e i'~/~ 
4(2~.h)1/2 sinh2(t/2) dt 

_ -2  ~.(k+l)I~ooeiy(2e/~+i(2+2k))dy 
(27rh) 1/2 k~o 

(17) 
(2~rh) 1/2 k~o /" ~ k h  J 

- 1  ~oo eitE/~ 
F9(E) 4(2~rh)~/2 J-oo sinh2(t/2) + sin2(At/2) dt 

- ( 2 ~ ) l / 2 k , ~ = o f _ ~ e x p { t [ - ( k + l + l ) + i ( ~ ( k - 1 ) + E ) ] } d t  

= -  Y, • + a ( k - l ) + i ( k + l + l )  (18) 
k,l=O 
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The Dirac deltas 6(Zo), where Zo is a complex number, are well-defined 
distributions on the test space of the entire functions exponentially bounded 
at infinity (Gelfand and Shilov, 1964; Vo-Khac Khoan, 1972). This kind of 
distribution is often called an ultradistribution and the space of the ultradis- 
tributions denoted by 77' (Gelfand and Shilov, 1964; Vo-Khac Khoan, 1972). 
However, F9(E) and Flo(E) are not well defined ultradistributions, since 
the series in (17) and (18) do not converge in the weak topology on 7/'. A 
further study is necessary in order to make precise what kind of generalized 
functions F9(E) and Flo(E) are and to determine their respective supports. 

5. APPENDIX 

The aim of this Appendix is to prove that if det B ~ 0, then 

i" 
~b(t) - 

[de t (X-  i)]1/2 

We make the proof  in three steps. 

Lemma 1. G is a real, symmetric matrix. Equation (7) implies that 
X T = -JX-lJ. 

Transposing (9), we have 

G T = (E T - / ) ( E v +  I)-'J T 

= --(-JX-IJ _ I)(-JX-IJ ...}- l)-Ij 

= - J ( - X  -1 + I ) J [ - J ( ~ ,  -1+ I ) j ] - l J  

=J(I-X-x)(X-'+I)-' 
-- J(.X - I)X-~[(I  + X)X-1] -~ 

= J ( X -  I)(X~- I )  -1 

= G  

G is a real matrix, which comes straighforwardly from its definition. 
As a consequence of  this lemma, there exists an orthogonal real matrix 

R such that G = RrDR, where D is a real, diagonal matrix. We have by (14) 

1 f d2nu tp(t) - -  (2r ~ X(U; t) 

F(t) i 
(2~h). f exp(-~uVCru) d2"u 

F(t) f ( i  d2.u - (2zrh) ~ exp ~ uTRTDRu) 
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_ (27rh) nF( t )  -[ exp(-~ v i  TDv) ldet(R-l) [d2,v  

where v = Ru. We have ]det(R-l)l = 1 because of the orthogonality of R. 
If we denote by {hi, i = 1, . . . ,  2n} the common eigenvalues of G and 

D, we have 

qJ(t) (2~.h) ~ exp~-~j~lAjV~ d r 1 " "  dr2. (A1) 

Lemma 2. det B # 0 ~ det G(t )  r 0 a.e. 
Let 

det(E - I)  
det G = (det J)  det(E + 1) -1 det(E - I)  = 

det(E + I)  

which shows that det G = 0 if and only if det(E - I)  = O. 
Let W be the Jordan canonical form of JB. Then there exists a nonsin- 

gular matrix S such that 

(E - I )  = ( e Jz' - I )  = S - ' (  e w' - I ) S  

Therefore 

2n 

d e t ( E - I ) = d e t ( e W ' - I )  = H ( e ~ / - 1 )  
j = l  

where {Yi} are the eigenvalues of W repeated as many times as shown by 
their multiplicity. Hence, if d e t ( E -  I) = 0, at least for one of these eigen- 
values e r / -  1 = 0, and consequently t = 0 or tk = 2k~ri/yj. 

The second alternative is only possible when yj is purely imaginary. 
Note that the eigenvalues yj of JB can never be zero because det B ~ 0 by 
hypothesis. 

We have proved that det G(t )  can at most be zero for a numerable set 
of instants of time. 

Let us go back to (A1). Here, hj ~ 0 a.e. because of Lemma 2, and 
therefore the integral giving ~(t)  is well defined, 

F ( t )  ~ i 
O(t) (2r e x p ( - ~ A j v ~ ) d v j ]  

We have a product of Fresnel integrals, which are well known (see, 
e.g., Marsden, 1973, p. 262), and give 

exp - -  A j r  2 e irr/4 
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Therefore, 

F ( t )  ~_~ (';r/'ll~/) 1 / 2 ei~./4 

F ( t )  (~'h) n e 'n~/2 

~ (II 21 
F ( t )  e in"/2 

- 2 " ( d e t  G )  1/2 

e inrr/2 1 1 

2" {det[(E+ I ) /2]}  1/2 {det[J(s + i )- l (?g_ i)]},/2 

ein~r/2 

[det(E + I)  det(s  + I)  -1 d e t ( s  I)] 1/2 

i n 

[det(s - I )  ] 1/2 

proving our claim. 
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